2、從某種意義上說,貸款就是壹種“明天的錢今天花”的行為,這其中就會涉及到壹個資金的時間價值,即資金的現值與終值。關於資金的現值與終值,貸款常見的有兩種計量方式,即單利和復利,單利就是現在我們在借貸的時候常用的計量方式,復利則是曾活躍在早些年代的“利滾利”。
其中,單利計量方式下:f=p(1+r×n);復利計量方式下:f=p(1+r)n(n表示前述括號中數值的n次方)
在上述公式中,f表示資金的終值,p表示現值,r表示利率,n則為計量周期
3、等額本息還款法方式下的計算公式:
設貸款額為a,月利率為i,年利率為I,還款月數為n,每月還款額為b,還款本息總和為Y,還款利息總和為Z還款本息總和:Y=a×(1+i)×(1+i)^n÷〔(1+i)^n-1〕
月均還款:b=Y/N
還款利息總和:Z=Y-a
說明:a^b表示a的b次方。
4、等額本金還款法:月還款=月還本金+月供利息
其中:月還本金=貸款總額/貸款總期數,月利息=貸款余額*月利率,月利率=年利率/12,貸款余額=貸款總額-已還本金。
額本息還款法,即貸款期每月以相等的額度平均償還貸款本息,每月還款計算公式為:每月還款額=貸款本金×月利率×(1+月利率)還款月數/[(1+月利率)還款月數-1]另壹種是等額本金還款法(利隨本清法),即每月等額償還貸款本金,貸款利息隨本金逐月遞減,每月還款額計算公式為:每月還款額=貸款本金/貸款期月數+(本金-已歸還本金累計額)×月利率