①x^2+(p+q)x+pq型的式子的因式分解
這類二次三項式的特點是:二次項的系數是1;常數項是兩個數的積;壹次項系數是常數項的兩個因數的和。因此,可以直接將某些二次項的系數是1的二次三項式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m時,那麽kx^2+mx+n=(ax+b)(cx+d).
圖示如下:
×
c d
例如:因為
1 -3
×
7 2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口訣:首尾分解,交叉相乘,求和湊中
順便說壹下:
雙十字相乘法屬於因式分解的壹類,類似於十字相乘法。
雙十字相乘法就是二元二次六項式,啟始的式子如下:
ax^2+bxy+cy^2+dx+ey+f
x、y為未知數,其余都是常數
用壹道例題來說明如何使用。
例:分解因式:x^2+5xy+6y^2+8x+18y+12.
分析:這是壹個二次六項式,可考慮使用雙十字相乘法進行因式分解。
解:圖如下,把所有的數字交叉相連即可
x 2y 2
① ② ③
x 3y 6
∴原式=(x+2y+2)(x+3y+6).
雙十字相乘法其步驟為:
①先用十字相乘法分解2次項,如十字相乘圖①中x^2+5xy+6y^2=(x+2y)(x+3y);
②先依壹個字母(如y)的壹次系數分數常數項。如十字相乘圖②中6y?+18y+12=(2y+2)(3y+6);
③再按另壹個字母(如x)的壹次系數進行檢驗,如十字相乘圖③,這壹步不能省,否則容易出錯。
.