假設貸款金額為A,月利率為I,年利率為I,還款月數為N,月還款額為B,總還款利息為y。
1、I=12×i
2、Y=n×b-a
3.每月還款利息
第壹個月還款利息為:A× I。
第二個月的還款利息為:[a-(b-a×I)]×I =(a×I-b)×(1+I)1+b。
第三個月的還款利息為{ a-(b-a×I)-[b-(a×I-b)×(1+I)1-b]}×I =(a×I-b)×(1+I)。
第四個月的還款利息= (A× I-B )× (1+I) 3+B。
.....
第n個月的還款利息=(a×I-b)×(1+I)(n-1)+b。
上面的和是:y =(a×I-b)×[(1+I)n-1]÷I+n×b。
4,以上兩個y值相等。
月平均還款:
支付利息:
還款總額:
註:a b代表a的b次方。
擴展數據:
等額本息還款法月貸款利息按月初剩余貸款本金計算,按月結算。因為每月還款額相等,在貸款初期的每月還款中,剔除按月結算的利息後,貸款本金較少;貸款後期,由於貸款本金的不斷減少,貸款利息在每月還款額中的不斷減少,每月償還貸款本金較多。
這種還款方式實際上占用的貸款更多,時間更長。同時方便借款人合理安排每月生活和理財(如租房),對於精通投資、善於“以錢生錢為家”的人來說,無疑是最佳選擇。
等額本息還款法的優點:每月還款額相等,方便購房者計算和安排每期的資金支出。由於還款金額均分,還款壓力也均分,特別適合前期收入低,經濟壓力大,每月還款負擔重的人群。
等額本息還款法的缺點:在每筆還款金額中,前期利息占比較大,後期還本比例逐漸增加。總的來說,利息支出總額是所有還款方式中最高的。
百度百科-等額本息法