模擬是對建立的系統或決策問題的數學或邏輯模型進行試驗,以獲得對系統行為的認識或幫助解決決策問題的過程。模擬的主要優點在於檢驗交易模型中的問題或系統的任何假設模型化的能力,使它成為最靈活的工具。判斷交易模型是否有實用價值,最簡單、最可靠的途徑是通過在盡量多的市場裏,進行長時間的測試。為了減少交易模型的檢測成本,檢測先從模擬開始。交易模型檢驗的基本原則是“模擬實戰”,壹切條件都要接近實戰條件,使檢驗結果盡可能真實,因為只有這樣才能使交易模型有真正的使用價值。
1.突發事件
在檢驗過程中壹定要包含有突發事件(包括漲跌停板),因為除了要檢驗交易模型在正常情況下的運作情況,還要有應付突發事件的能力,不能因為是“小概率”事件而忽略了突發事件的影響,應遵循“模擬實戰”的基本原則。壹個成熟的交易模型,即使不能捕捉到突發事件帶來的超額利潤,也應該有能力抵抗突發事件帶來的風險。
2.檢驗的信息和數據
對於基本分析交易模型,需要有完善的信息數據庫,信息的來源隨著科技的發達,互聯網的不斷應用,信息的收集比以前方便了許多,因此要整理完善好信息數據庫相對較容易。對於技術分析交易模型,由於期貨基金運作的是期貨品種,期貨品種的數據有它的獨特性,歐美期貨的數據有各自不同的特點,如倫敦金屬的期貨數據沒有出現“斷層現象”,使用計算機檢驗就不會有問題,而國內的期貨數據源襲了美式期貨數據,不同的交易合約換月時會出現“數據斷層”,不能像股票壹樣使用簡單的除權處理,因此要通過交易模型的檢驗首先對數據進行處理。
實際合約數據:按照實際的合約交易數據,缺點是十分明顯的,因為國內期貨合約目前只有1年的周期,因此在檢驗時數據周期就顯得太短了,而且在相當長的交易時間內合約的成交量並不活躍,流動性小,不具有代表意義。
即月連續數據:按合約交割日連接,連接起來形成連續數據。這樣產生的連續數據優點是具有實際交易性,但在實戰交易中會產生差別,交割前成交不活躍,缺乏代表性,像上海銅壹般都是交割月後第四、五個合約成交活躍;缺點則是會產生“斷層現象”,對檢驗結果產生重大的失真。
價差調整連續數據:按照壹定的規則,在進入交割前壹定時間內連接隨後的合約數據,這裏的時間參數X,要根據不同品種來確定,上海銅要比大連大豆和鄭州小麥的時間參數X要大,將調整時兩個合約的價差累計下來,最後將累計價差加減到數據列中,得出最終的期貨數據。特別註意的是,經過調整的期貨數據可能會出現負值,要做相應的數據調整,但這不會影響使用計算機檢測的交易結果。優點是能長時間反映價格變化水平;缺點是數據不能直接應用於實際交易中,需要通過轉換。
權重連續數據:按照固定的時間連接隨後的合約數據,同時按近月大、遠月小或是按成交量與持倉量的比重計算連續價格,隨著時間的推移,較近的合約的權重越來越小,而遠月的權重越來越大。優點是消除了數據“斷層現象”,可以選取多個活躍月份,這樣就可以更真實地貼近實戰交易;缺點也是數據不能直接應用於實際交易中,需要通過轉換。
以上四種數據處理方式各有所長,要根據使用者的情況選用。對於短線使用者,實際合約數據較好,而對於中長線的使用者連續數據才能真實反映實際中長期的盈虧情況,並進行計算機的檢測。在對交易模型的檢測中,為了保證檢驗結果的可靠性和穩定性,需要足夠的統計樣本數據,按照統計學的大樣本要求,樣本數量要多於30個。以短線為主的交易模型,數據時間不能短於1年的分時數據,使用日線數據檢測的不能少於3年以上,基本分析交易模型的數據要求要經歷壹個以上的循環周期。