當前位置:外匯行情大全網 - 期貨行情 - 黃金分割在數學中的應用

黃金分割在數學中的應用

歐多克索斯是公元前4世紀的希臘數學家。他研究了許多比例問題,創立了比例理論。在研究比例的過程中,曾經提出壹個問題:能否將壹條線段分成兩個不相等的部分,使較長的部分是原線段和較短部分的比例中位數?他通過研究發現,壹條已知的線段可以分成兩段,這樣長線段與短線段之比就等於完整線段與長線段之比,即長線段是完整線段與短線段之比的中位數。如果已知線段為ab,C點將ab分為ac,bc,AC > BC,AC2 = ab CB,那麽C點的具體劃分方法是:連接ad,以D為圓心,bd為半徑畫壹條弧,ad與E相交,以A為圓心,ae為半徑畫壹條弧,ab與C相交,那麽C點就是所需的劃分點。因此,歐多克索斯把這種比較稱為“中外比較”。在數學史上,歐多克索斯最早提出中外比較,但希臘人發現得更早。神秘的畢達哥拉斯學派曾以五角星為其標誌,五角星的繪制包含了中外對比。雅典的帕臺農神廟是古希臘的傑作,這座建於公元前5世紀的神廟的長寬比與中外的比例不謀而合。中外比較,後來被世人稱為“黃金分割”。雖然歐多克索斯是第壹個系統地研究黃金分割的人,但它是何時以及為什麽產生的呢?黃金分割的由來人們認為黃金分割的繪制與正五邊形、正十邊形、五角形的繪制有關,尤其是五角形繪制的需要所導致的。五角星形狀是壹種非常耐人尋味的圖案,世界上很多國家的國旗上的“星星”都是畫成五角形的。目前,近40個國家(如中國、美國、朝鮮、土耳其、古巴等。)國旗上有五角星。為什麽是五角而不是其他角?也許這是壹個古老的習慣。五角星的起源很早。現在發現的最早的五芒星圖案是公元前3200年左右在幼發拉底河下遊的馬魯克(今伊拉克)制作的壹塊泥板。古希臘的畢達哥拉斯學派用五角星作為他們的徽章或標誌,稱之為“健康”。可以認為畢達哥拉斯熟悉五角星的做法,說明他掌握了黃金分割法。壹般認為黃金分割是公元前6世紀畢達哥拉斯發現的。系統討論黃金分割的最早記錄是歐幾裏得的《幾何原本》。本書第四冊,講述了利用黃金分割做五邊形和十邊形的問題。在第二冊中,11壹節詳細描述了黃金分割的計算方法,其中寫道:“用H點按中端比截線段ab,使ab: ah = ah: HB”。在《幾何原本》中稱之為“中端比”。直到文藝復興時期,人們重新發現了古希臘數學,發現這種比例廣泛存在於許多圖形的自然結構中,於是高度贊揚了中端比的奇妙性質和用途。意大利數學家帕喬利把中國到終點的比率稱為“神聖比率”;德國天文學家開普勒把中國與末端的比稱為“比例除法”,認為勾股定理“像金子壹樣”,中國與末端的比是“寶石”。第壹個在著作中使用“黃金分割”這個名稱的人是德國數學家m .歐姆,他是發現歐姆定律的G. S .歐姆的弟弟。他在《純初等數學》(第二版,1835)壹書中,用德語單詞“der goldene schnitt”來表達中美之間的比較。之後,這個稱呼逐漸流行起來。黃金分割與“兔子問題”斐波那契是13世紀歐洲著名的數學家。他是意大利人。他於1202年出版的《算盤》壹書,向歐洲人介紹了東方數學。本書修訂版1228中介紹了壹個“兔子問題”。這道題需要計算壹對兔子壹年後能繁殖出多少對兔子。假設壹對兔子每個月可以生壹對兔子,兔子在出生後的第二個月可以生下新的兔子,這樣壹開始是壹對,壹個月後是兩對,兩個月後是三對,三個月後是五對,.....每個月的兔子數量按系列排列:1,2,3,5,8,18。.....被稱為“斐波那契數列”,其結構是從第三項開始,每壹項都是前兩項之和,即fn=fn-1+fn-2(n≥3),fn代表第n項。如果用G表示黃金分割數,這些比值越來越接近G,其實G就是極限。這個有趣的性質很奇怪:來自兩個完全不同的數學領域的問題卻得出了壹個共同的結果。兩者的神奇聯系,讓黃金分割更加神秘迷人。黃金分割的啟示隨著社會的發展,人們發現黃金分割在自然界和社會中被廣泛應用。比如與黃金分割相關的優化方法中有兩種方法。壹種是本文開頭指出的“0.618法”,這是美國數學家基弗在1953年提出的壹種最優化方法。從1970開始在國內推廣,取得了良好的經濟效益。在現代最優化理論中,它使我們能夠用較少的實驗找到合適的工藝條件和合理的配方。雖然G是壹個無理數,0.168是壹個近似值,但在實際中已經足夠精確了。第二種是分式法,取G的近似值,但不是0.618,而是G的連分式展開的漸近分式,即利用某個斐波那契數列的分數。黃金分割的應用也顯示了壹個數學發展的規律。說明研究和發展數學理論是非常重要的。純理論的發展不壹定對實踐有直接作用,但它揭示的自然規律壹定會指導人們的社會實踐。因此,壹方面要找到解決問題的數學方法,另壹方面也要為純數學理論開拓應用領域。此外,重視“黃金分割”之謎的現象也存在。比如黃金分割與“美”的關系,有人說黃金分割得到的有兩條邊的矩形(即兩條邊的比值=g的矩形)是最美的。這是沒有充分依據的,專家在做社會調查時也否定了這個結論。所以黃金矩形最美的結論是不確定的。由此衍生出的很多猜想自然是不靠譜的。再比如,人體各部位(如從頭頂到肚臍,從肚臍到腳跟)的長度比例,在黃金分割比例中是最美的;建築各部分的比例如果符合黃金比例就是最美的,以此類推。這些說法大多牽強附會。認為樂器的弦長比例等於黃金比例,演奏出來的聲音和諧悅耳,也是壹種誤解。其實和聲音樂的弦長壹定是簡單的,黃金比例是壹個無理數!所謂黃金分割就是這樣的劃分:壹個內點把壹條線段分成短的部分和長的部分,使它們的長度滿足這樣壹個關系:短:長=長:完整。在這個比例公式中,“短”和“長”分別是指短線段和長線段除以內點的長度,而“滿”是指整個線段的長度,即滿=短+長。據說古希臘數學家歐多克索斯首先研究了黃金分割。這就是為什麽它被稱為黃金分割,因為它有許多奇妙的性質和應用。比如長寬比滿足黃金比例的長方形物體(如窗戶、書籍)的形狀,會讓人覺得很美,很順眼。在中世紀,黃金分割作為美的象征,幾乎滲透到了建築和藝術的各個部分,比如說,據說人體雕塑的上半身和下半身的長度,如果符合黃金比例,就是最對稱最美麗的。
  • 上一篇:實物黃金可以嗎?如千足金
  • 下一篇:索羅斯是怎樣做空港幣
  • copyright 2024外匯行情大全網